Support Matrix Regression for Learning Power Flow in Distribution Grid With Unobservability

نویسندگان

چکیده

Increasing renewable penetration in distribution grids calls for improved monitoring and control, where power flow (PF) model is the basis many advanced functionalities. However, unobservability makes traditional way infeasible to construct PF analysis via admittance matrix grids. While data-driven approaches can approximate mapping, direct machine learning (ML) applications may suffer from several drawbacks. First, complex ML models like deep neural networks lack degradability explainability true system model, leading overfitting. There are also asynchronization issues among different meters without GPS chips. Last but not least, bad data quite common To resolve these problems all at once, we propose a variational support regression (SMR). It provides structural (1) embed kernels regularize physical form observable area while achieving good approximation unobservable area, (2) integrate temporal information into asynchronized imputation, (3) define margins be robust against data. We test performance mapping rule IEEE systems utility grid. Simulation results show high accuracy, robustness quality issues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Direct Matrix Inversion-Less Analysis for Distribution System Power Flow Considering Distributed Generation

This paper presents a new direct matrix inversion-less analysis for radial distribution systems (RDSs). The method can successfully deal with weakly meshed distribution systems. (WMDSs). Being easy to implement, direct methods (DMs) provide an excellent performance. Matrix inversion is the mean reason of divergence and low-efficiency in power flow algorithms. In this paper, the performance of t...

متن کامل

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Learning Theory for Distribution Regression

We focus on the distribution regression problem: regressing to vector-valued outputs from probability measures. Many important machine learning and statistical tasks fit into this framework, including multi-instance learning or point estimation problems without analytical solution such as hyperparameter or entropy estimation. Despite the large number of available heuristics in the literature, t...

متن کامل

Very Fast Load Flow Calculation Using Fast-Decoupled Reactive Power Compensation Method for Radial Active Distribution Networks in Smart Grid Environment Based on Zooming Algorithm

Distribution load flow (DLF) calculation is one of the most important tools in distribution networks. DLF tools must be able to perform fast calculations in real-time studies at the presence of distributed generators (DGs) in a smart grid environment even in conditions of change in the network topology. In this paper, a new method for DLF in radial active distribution networks is proposed. The ...

متن کامل

A Grid-Connected PV Inverter with Compensation of Load Active and Reactive Power Imbalance for Distribution Networks

Load balancing is an important issue in distributed systems. In addition, using distributed generation sources such as photovoltaic is increasing. Power electronic converters are main interfaces between the sources and the grid. In this paper, a method has been proposed to reduce the load imbalancing in distribution networks using PV Grid Interface Converter. Two DC/DC and DC/AC converters have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Power Systems

سال: 2022

ISSN: ['0885-8950', '1558-0679']

DOI: https://doi.org/10.1109/tpwrs.2021.3107551